5,500 research outputs found

    A project to evaluate moisture stress in corn and soybean areas of western and southwestern Minnesota

    Get PDF
    Remote sensing techniques, particularly LANDSAT data, were used to assess soil moisture stress through crop signature in southwestern Minnesota. Related objectives were: localization of droughty, well drained, and poorly drained soils; detection of stress from hail, wind, and disease damage; and the use of remote sensing data for agricultural management. Since the amount and distribution of precipitation were adequate during the 1977 and 1978 growing seasons, no significant stress occurred. Crop conditions were very favorable. As a result, crop signatures were too uniform to reflect soilscape variations and crop condition changes. In 1979 precipitation was again adequate to excess, particularly in June and August. In some cases, poorly drained sites especially, stress conditions developed as a result of excess of water and could be identified on color infrared photographs

    The diurnal nature of future extreme precipitation intensification

    Get PDF
    Short‐duration, high‐impact precipitation events in the extratropics are invariably convective in nature, typically occur during the summer, and are projected to intensify under climate change. The occurrence of convective precipitation is strongly regulated by the diurnal convective cycle, peaking in the late afternoon. Here we perform very high resolution (convection‐permitting) regional climate model simulations to study the scaling of extreme precipitation under climate change across the diurnal cycle. We show that the future intensification of extreme precipitation has a strong diurnal signal and that intraday scaling far in excess of overall scaling, and indeed thermodynamic expectations, is possible. We additionally show that, under a strong climate change scenario, the probability maximum for the occurrence of heavy to extreme precipitation may shift from late afternoon to the overnight/morning period. We further identify the thermodynamic and dynamic mechanisms which modify future extreme environments, explaining both the future scaling's diurnal signal and departure from thermodynamic expectations

    Micro-Sigmoids as Progenitors of Coronal Jets - Is Eruptive Activity Self-Similarly Multi-Scaled?

    Full text link
    Observations from the X-ray telescope (XRT) on Hinode are used to study the nature of X-ray bright points, sources of coronal jets. Several jet events in the coronal holes are found to erupt from small-scale, S-shaped bright regions. This finding suggests that coronal micro-sigmoids may well be progenitors of coronal jets. Moreover, the presence of these structures may explain numerous observed characteristics of jets such as helical structures, apparent transverse motions, and shapes. In analogy to large-scale sigmoids giving rise to coronal mass ejections (CMEs), a promising future task would perhaps be to investigate whether solar eruptive activity, from coronal jets to CMEs, is self-similar in terms of properties and instability mechanisms.Comment: 8 pages, 5 figures, 1 tabl

    From My Journal

    Get PDF

    Modeling scenarios for water allocation in the Gediz Basin, Turkey

    Get PDF
    Water management / Water allocation / Models / River basin development / Hydrology / Decision making / Environmental effects / Water use efficiency / Climate / Irrigation water / Irrigated farming / Stream flow / Surface water / Salt water intrusion / Turkey / Gediz Basin

    FEBA - flooding experiments with blocked arrays. Evaluation report

    Get PDF

    Analysis of Personal and Professional Requirements for Special Education Teachers in Eastern Washington

    Get PDF
    It was the purpose of this study (1) to determine the criteria used for the employment of special education teachers in Eastern Washington; (2) to compare current qualifications with professional standards suggested by nationally recognized studies; and (3) evaluate these findings for teacher selection
    corecore